Abstract

A novel algorithm is introduced for coding all Slater determinants in the covalent space with conserved SZ, the z component of total spin S for a classical valence bond (VB) model. It effectively minimizes the search time and the storing space in the central memory of the computer. In cooperation with symmetry reductions based on molecular point group and spin inversion, the VB calculations have been extended to benzenoid hydrocarbons of up to 28 π-electrons that have 4×107 configurations. The low-lying states of benzenoids with 24, 26, and 28 π-electrons have been obtained for 62 species. To rationalize the aromaticity of benzenoids in a VB scheme, the resonance energy per hexagon (REPH) is defined. A linear correlation between the REPH and the energy gap of the ground (singlet) state and the first excited (triplet) state for 89 benzenoids is established. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 856–869, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.