Abstract

A prerequisite to genetic recombination in the T4 bacteriophage is the formation of the presynaptic filament-a helical nucleoprotein filament containing stoichiometric amounts of the uvsX recombinase in complex with single-stranded DNA (ssDNA). Once formed, the filament is competent to catalyze homologous pairing and DNA strand exchange reactions. An important component in the formation of the presynaptic filament is the uvsY protein, which is required for optimal uvsX-ssDNA assembly in vitro, and essential for phage recombination in vivo. uvsY enhances uvsX activities by promoting filament formation and stabilizing filaments under conditions of low uvsX, high salt, and/or high gp32 (ssDNA-binding protein) concentrations. The molecular properties of uvsY include noncooperative binding to ssDNA and specific protein-protein interactions with both uvsX and gp32. Evidence suggests that all of these hetero-associations of the uvsY protein are important for presynaptic filament formation. However, there is currently no structural information available on the uvsY protein itself. In this study, we present the first characterization of the self-association of uvsY. Using hydrodynamic methods, we demonstrate that uvsY associates into a stable hexamer (s020,w = 6.0, M = 95 kDa) in solution and that this structure is competent to bind ssDNA. We further demonstrate that uvsY hexamers are capable of reversible association into higher aggregates in a manner dependent on both salt and protein concentration. The implications for presynaptic filament formation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.