Abstract
Irradiation with ultraviolet light (UV) at 254 nm is effective in inactivating a wide range of human pathogens. In Sweden, a UV dose of 400 J/m2 is often used for the treatment of drinking water. To investigate its effect on virus inactivation, enteric viruses with different genomic organizations were irradiated with three UV doses (400, 600, and 1000 J/m2), after which their viability on cell cultures was examined. Adenovirus type 2 (double-stranded DNA), simian rotavirus 11 (double-stranded RNA), and echovirus 30 (single-stranded RNA) were suspended in tap water and pumped into a laboratory-scale Aquada 1 UV reactor. Echovirus 30 was reduced by 3.6-log10 by a UV dose of 400 J/m2. Simian rotavirus 11 and adenovirus type 2 were more UV resistant with only 1-log10 reduction at 400 J/m2 and needed 600 J/m2 for 2.9-log10 and 3.1-log10 reductions, respectively. There was no significant increase in the reduction of viral viability at higher UV doses, which may indicate the presence of UV-resistant viruses. These results show that higher UV doses than those usually used in Swedish drinking water treatment plants should be considered in combination with other barriers to disinfect the water when there is a risk of fecal contamination of the water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.