Abstract
Deciding on the unimodality of a dataset is an important problem in data analysis and statistical modeling. It allows to obtain knowledge about the structure of the dataset, i.e. whether data points have been generated by a probability distribution with a single or more than one peaks. Such knowledge is very useful for several data analysis problems, such as for deciding on the number of clusters and determining unimodal projections. We propose a technique called UU-test (Unimodal Uniform test) to decide on the unimodality of a one-dimensional dataset. The method operates on the empirical cumulative density function (ecdf) of the dataset. It attempts to build a piecewise linear approximation of the ecdf that is unimodal and models the data sufficiently in the sense that the data corresponding to each linear segment follows the uniform distribution. A unique feature of this approach is that in the case of unimodality, it also provides a statistical model of the data in the form of a Uniform Mixture Model. We present experimental results in order to assess the ability of the method to decide on unimodality and perform comparisons with the well-known dip-test approach. In addition, in the case of unimodal datasets we evaluate the Uniform Mixture Models provided by the proposed method using the test set log-likelihood and the two-sample Kolmogorov-Smirnov (KS) test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.