Abstract

Abstract The utility of X-band polarimetric radar for quantitative retrievals of rainfall parameters is analyzed using observations collected along the U.S. west coast near the mouth of the Russian River during the Hydrometeorological Testbed project conducted by NOAA’s Environmental Technology and National Severe Storms Laboratories in December 2003 through March 2004. It is demonstrated that the rain attenuation effects in measurements of reflectivity (Ze) and differential attenuation effects in measurements of differential reflectivity (ZDR) can be efficiently corrected in near–real time using differential phase shift data. A scheme for correcting gaseous attenuation effects that are important at longer ranges is introduced. The use of polarimetric rainfall estimators that utilize specific differential phase and differential reflectivity data often provides results that are superior to estimators that use fixed reflectivity-based relations, even if these relations were derived from the ensemble of drop size distributions collected in a given geographical region. Comparisons of polarimetrically derived rainfall accumulations with data from the high-resolution rain gauges located along the coast indicated deviation between radar and gauge estimates of about 25%. The ZDR measurements corrected for differential attenuation were also used to retrieve median raindrop sizes, D0. Because of uncertainties in differential reflectivity measurements, these retrievals are typically performed only for D0 > 0.75 mm. The D0 estimates from an impact disdrometer located at 25 km from the radar were in good agreement with the radar retrievals. The experience of operating the transportable polarimetric X-band radar in the coastal area that does not have good coverage by the National Weather Service radar network showed the value of such radar in filling the gaps in the network coverage. The NOAA X-band radar was effective in covering an area up to 40–50 km in radius offshore adjacent to a region that is prone to flooding during wintertime landfalling Pacific storms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.