Abstract

The hierarchical structure of real-world problems has motivated extensive research into temporal abstractions for reinforcement learning, but precisely how these abstractions allow agents to improve their learning performance is not well understood. This paper investigates the connection between temporal abstraction and an agent's exploration policy, which determines how the agent's performance improves over time. Experimental results with standard methods for incorporating temporal abstractions show that these methods benefit learning only in limited contexts. The primary contribution of this paper is a clearer understanding of how hierarchical decompositions interact with reinforcement learning algorithms, with important consequences for the manual design or automatic discovery of action hierarchies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.