Abstract
Isoprene chemoenzymatic cascades (ICCs) overcome the complexity of natural pathways by leveraging a streamlined two-enzyme cascade, facilitating efficient synthesis of C5-isoprene diphosphate precursors from readily available alcohol derivatives. Despite the documented promiscuity of enzymes in ICCs, exploration of their potential for accessing novel compounds remains limited, and existing methods require additional enzymes for generating longer-chain diphosphates. In this study, we present the utility of Streptococcus mutans undecaprenol kinase (SmUdpK) for the chemoenzymatic synthesis of diverse non-natural isoprenoids. Using a library of 50 synthetic alcohols, we demonstrate that SmUdpK’s promiscuity extends to allylic chains as small as four carbons and benzylic alcohols with various substituents. Subsequently, SmUdpK is utilized in an ICC with isopentenyl phosphate kinase and aromatic prenyltransferase to generate multiple non-natural isoprenoids. This work provides evidence that, with proper optimization, SmUdpK can act as the first enzyme in these ICCs, enhancing access to both valuable and novel compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.