Abstract
Polycyclic aromatic hydrocarbons (PAHs), especially high molecular weight PAHs, are carcinogenic and mutagenic organic compounds that are difficult to degrade. Microbial remediation is a popular method for the PAH removal in diverse environments and yet it is limited by the lack of electron acceptors. An emerging solution is to use the microbial electrochemical system, in which the solid anode is used as an inexhaustible electron acceptor and the microbial activity is stimulated by biocurrent in situ to ensure the PAH removal and avoid the defects of bioremediation. Based on the extensive investigation of recent literatures, this paper summarizes and comments on the research progress of PAH removal by the microbial electrochemical system of diversified design, enhanced measures and functional microorganisms. First, the bioelectrochemical degradation of PAHs is reviewed in separate and mixed PAH degradation, and the removal performance of PAHs in different system configurations is compared with the anode modification, the enhancement of substrate and electron transfer, the addition of chemical reagents, and the combination with phytoremediation. Second, the key functional microbiota including PAH degrading microbes and exoelectrogens are overviewed as well as the reduced microbes without competitive advantage. Finally, the typical representations of electrochemical activity especially the internal resistance, power density and current density of systems and influence factors are reviewed with the correlation analysis between PAH removal and energy generation. Presently, most studies focused on the anode modification in the bioelectrochemical degradation of PAHs and actually more attentions need to be paid to enhance the mass transfer and thus larger remediation radius, and other smart designs are also proposed, especially that the combined use of phytoremediation could be an eco-friendly and sustainable approach. Additionally, exoelectrogens and PAH degraders are partially overlapping, but the exact functional mechanisms of interaction network are still elusive, which could be revealed with the aid of advanced bioinformatics technology. In order to optimize the efficacy of functional community, more advanced techniques such as omics technology, photoelectrocatalysis and nanotechnology should be considered in the future research to improve the energy generation and PAH biodegradation rate simultaneously.
Highlights
Polycyclic aromatic hydrocarbons (PAHs), especially high molecular weight (HMW) PAHs, are carcinogenic and mutagenic organic compounds that are difficult to degrade (Liang et al, 2020; Sharma et al, 2020)
The contaminated soil and conductive carbon fiber were mixed to increase the degradation of 16 priority PAHs (Li et al, 2016c), as the electron transfer from the soil to anode and power output were improved (Figure 2B), and the effective remediation radius was enlarged from 6 to 20 cm; the air-cathode area was not changed
Firstly the PAH, especially HMW PAH, degradation in microbial fuel cell (MFC) of different setups is summarized and discussed, which benefit the future decision-making in design improvement; the taxonomic diversity and functional diversity of microbial communities in MFCs are reviewed, including both PAH degrading microbes and exoelectrogens, which is followed by the discourse of electrochemical performance of various MFCs
Summary
Polycyclic aromatic hydrocarbons (PAHs), especially high molecular weight (HMW) PAHs, are carcinogenic and mutagenic organic compounds that are difficult to degrade (Liang et al, 2020; Sharma et al, 2020). Some studies were performed to improve substrate mass transfer in soil/sediment MFCs. With multi-anode arrangement, the performance of scaled-up or fieldscale MFC was improved, and both remediation radius and electric charges were increased (Hsu et al, 2013; Zhao et al, 2017).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.