Abstract

Affine quantum gravity involves (i) affine commutation relations to ensure metric positivity, (ii) a regularized projection operator procedure to accommodate first-and second-class quantum constraints, and (iii) a hard-core interpretation of nonlinear interactions to understand and potentially overcome nonrenormalizability. In this program, some of the less traditional mathematical methods employed are (i) coherent-state representations, (ii) reproducing kernel Hilbert spaces, and (iii) functional-integral representations involving a continuous-time regularization. Of special importance is the profoundly different integration measure used for the Lagrange multiplier (shift and lapse) functions. These various concepts are first introduced on elementary systems to help motivate their application to affine quantum gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.