Abstract

Plants of oceanic islands, often remarkably divergent morphologically from continental relatives, are useful models for studying evolution and speciation because evolution is telescoped in time and space. Prior studies revealed little DNA sequence variation within the clade of ca. 10 Canary Island species of Tolpis, which precluded resolving species relationships. The present study assessed the utility of automated analysis of inter-simple sequence repeat (ISSR) loci for resolving relationships within the clade using 264 individuals from 36 populations of all recognized species and three undescribed morphological variants. Similarity (Dice coefficient) and Fitch parsimony were used to generate neighbor-joining (NJ) and strict consensus trees (MP), respectively. All individuals of the morphologically distinct endemic species formed clusters in both trees. There is also support for clusters of two undescribed variants in the NJ tree. Individuals from a morphologically variable complex consisting primarily of two species are not well resolved at population or species levels. The NJ and MP trees are not congruent at deeper levels, including relationships among species. Results are interpreted in terms of the biology of the species, and the utility of automated analysis of ISSR markers for interpreting patterns of evolution of Tolpis in the Canary Islands is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call