Abstract

In this paper, the applicability of exponential cluster expansions involving one- and two-body operators in high accuracy ab initio electronic structure calculations is examined. First, the extended coupled-cluster method with singles and doubles (ECCSD) is tested in the demanding studies of systems with strong quasi-degeneracies, including potential energy surfaces involving multiple bond breaking. The numerical results show that the single-reference ECCSD method is capable of providing a qualitatively correct description of quasi-degenerate electronic states and potential energy surfaces involving bond breaking, eliminating, in particular, the failures and the unphysical behavior of standard coupled-cluster methods in similar cases. It is also demonstrated that one can obtain entire potential energy surfaces with millihartree accuracies by combining the ECCSD theory with the non-iterative a posteriori corrections obtained by using the generalized variant of the method of moments of coupled-cluster equations. This is one of the first instances where the relatively simple single-reference formalism, employing only one- and two-body clusters in the design of the relevant energy expressions, provides a highly accurate description of the dynamic and significant non-dynamic correlation effects characterizing quasi-degenerate and multiply bonded systems. Second, an evidence is presented that one may be able to represent the virtually exact ground- and excited-state wave functions of many-electron systems by exponential cluster expansions employing general two-body or one- and two-body operators. Calculations for small many-electron model systems indicate the existence of finite two-body parameters that produce the numerically exact wave functions for ground and excited states. This finding may have a significant impact on future quantum calculations for many-electron systems, since normally one needs triply excited, quadruply excited, and other higher-than-doubly excited Slater determinants, in addition to all singly and doubly excited determinants, to obtain the exact or virtually exact wave functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.