Abstract
In addition to showing the specific interaction between a generalized ligand and its receptor and the electrostatic effect between positive cell-penetrating peptides and negative cell membranes, our last study demonstrated the hydrophobic interactivity between a hydrophobic binding peptide (HBP) and biomembranes to be favorable in drug delivery. To yield more evidence for this new strategy and to find more effective HBPs, here we designed and established a novel nanomedicine associated with cyclosporin A (CsA) because this peptide is electrically neutral, highly hydrophobic, very stable in vivo and safe at the given dose. First, isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) studies showed a strong hydrophobic interaction between the CsA molecules and the lipid membrane. The lactate dehydrogenase release assay proved that CsA exhibited low toxicity to cell membranes. These facts encouraged us to explore the potential application of CsA as an HBP to actualize intracellular delivery of nanomedicines for tumor therapy. When conjugated to lipid nanocarriers, CsA significantly enhanced their binding with cells and,. consequently, increased the internalization of recoded nanomedicines into cells. The in vivo experiments further showed that the CsA-associated nanocarriers could achieve better delivery to tumor tissues and improve the tumor therapy of doxorubicin (DOX) compared to the nonmodified control; these findings were identical to the observations-in cell studies. In conclusion, CsA, a readily obtainable molecule with favorable characteristics, is indeed a good candidate for an HBP, and this study provides solid, novel evidence for the use of HBP-based nanocarriers as effective antitumor drug delivery systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.