Abstract

Many sequential sampling plans used in forest sampling are composite three-decision plans based on the simultaneous use of two of Wald's sequential probability ratio tests (SPRTs). Wald's operating characteristic (OC) and average sample number (ASN) equations for each SPRT are used to describe the properties of the composite sampling plan. Wald's equations are only approximate because of "overshooting" of the decision boundaries of the SPRTs and the two SPRTs operate simultaneously in the composite plan. Wald's and Monte Carlo OC and ASN functions were developed for (i) two SPRTs used to develop a three-decision composite plan and (ii) the three-decision composite plan based on the negative binomial distribution. Wald's equations, in general, overestimate the true error probabilities and underestimate the true ASN for a given SPRT. Wald's equations are less accurate in describing the properties of the three-decision plan. Monte Carlo functions are more accurate than Wald's functions. Recommendations are made regarding the choice between Wald's and Monte Carlo functions. A Monte Carlo procedure to modify the decision boundaries of the plan to yield actual error probabilities approximately equal to the desired error probabilities is suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call