Abstract
The article presents the possibilities of using a video camera to create a 3D metric model of engineering objects using Agisoft and CloudCompare software. Traditional photogrammetry technique does not always match up with production urgency needed by the market. Complexity is seen when used in huge objects leading to rise of cost, time and tediousness of the work. The use of Video Camera technique here termed as videogrammetry technique is comparable to taking pictures, however, it allows to speed up the process of obtaining data, which in many cases is a key element in anyb any project or research. The analysis of the quality of 3D modelling of the three filmed objects was performed, which allowed the authors to refine the procedure for acquiring images for spatial analyses. The applied technique of “videogrammetry” is comparable to taking pictures, but allows the data acquisition process to speed up, which in many cases is a key element in field research. 3D objects videos from no-metric camera were processed by Agisoft Metashape. To be able to assess the accuracy of the videogrammetry data, a well-established Laser scanner technique’s data was used for comparison. The laser scanner data were pre-processed in Autodesk Recap. Manual registration was performed utilizing 14 points from the three scans. The two 3D models were exported to CloudCompare software for comparison and further analysis. An analysis of the quality of 3D modelling of the three objects filmed was performed, which allowed refining the procedure for obtaining images for spatial analysis. The article presents the possibilities of using a non-metric mobile phone video camera “videogrammetry” to create a metric 3D model of engineering objects using Agisoft and CloudCompare software. In CloudCompare a registration, cloud to cloud (C2C) and profile to profile analysis was performed to determine the uncertainty of the 3D model produced from videogrammetry data determined as distance of separation between the two models. Results show average distance of separation between laser scanner and videogrammetry derived 3D model point cloud to be 34cm, the average profile separation was 25 cm in XY plane and 1.9 cm in Z-plane. Using Cloud to Cloud PCV the average difference of 84 cm was determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.