Abstract

This paper has proposed an optimization process with two phases to optimize suspension parameters of a high speed railway vehicle for advancing system’s robustness and performance. The vehicle’s nonlinear coupled differential equations of motion with fourteen degrees of freedom are created based on Kalker’s linear theory and the heuristic nonlinear creep model. The performance measure of the vehicle system is critical hunting speed, which is determined by Lyapunov’s indirect method. The first phase of optimization is to execute a set of experiments which is planned based on uniform design method. The second phase of optimization is to apply the Nelder-Mead Simplex method to exploit the best solution obtained in the first phase. Finally, the presented optimization process can effectively not only advance the performance of the vehicle system but also increase the performance’s robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.