Abstract

It has been previously shown that the amplitude of the ultrasound-stimulated acoustic emission (USAE) signal is sensitive to tissue temperature and, therefore, can help detect it. Its amplitude, however, is sensitive to both acoustical and mechanical parameters, that at most frequencies have opposite effects due to temperature. In this paper, we explore the feasibility of using a frequency shift of the resonant peaks of the USAE signal for monitoring the tissue stiffness variation with temperature. In a numerical simulation, the variation of the frequency shift at different temperatures is shown. Then, in a series of experiments involving a gel phantom and porcine muscle tissue, the frequency shift variation is shown to follow the known stiffness changes due to temperature. It is also shown that this shift indicates reversible changes as well as the onset of thermal coagulative necrosis. The necrosis is marked by a monotonically increasing positive frequency shift. It was thus shown that the USAE spectrum peaks undergo a negative shift (or, downshift) when the stiffness decreases and a positive shift (or, upshift) when the stiffness increases. The experimental frequency shifted around a peak at 22.1–22.5 kHz within a range of −250 to 80 Hz and −200 to 250 Hz for the gel and muscle tissue for the temperatures of 25–70 and 30–70 °C, respectively. Simulation and ex vivo experimental results indicate that the USAE frequency shift method can help decouple the mechanical from the acoustical parameter dependence as well as detect the onset of thermal coagulative necrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call