Abstract

The use of big data in many socio-economic studies has received a growing interest in the last few years. In this work we use emotional data coming from Twitter as auxiliary variable in a small area model to estimate Italian households’ share of food consumption expenditure (the proportion of food consumption expenditure on the total consumption expenditure) at provincial level. We show that the use of Twitter data has a potential in predicting our target variable. Moreover, the use of these data as auxiliary variable in the small area working model reduces the estimated mean squared error in comparison with what obtained by the same working model without the Twitter data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.