Abstract

Abstract This paper explores the use of the constant grid flux form forward-in-time upstream-biased advection schemes for the advection of temperature and salinity in ocean modeling. The constant grid flux form schemes are shown to be an improvement over the traditional central differencing commonly used in ocean models. In addition, nonoscillatory versions of the scheme, which employ flux limiters, are explored. The limiters are based on total variation diminishing concepts and are applied to higher-order (in space) versions of the constant grid flux form scheme. The constant grid flux form schemes are Crowley-type upstream-biased Eulerian advection schemes. They are mass conserving and possess small amplitude and phase errors. The flux limiters prevent the under- and overshooting associated with the numerical dispersion of the unlimited schemes. The limited schemes are easy to implement, efficient, and nonoscillatory. Of these schemes the third-order and fifth-order versions employing the PDM limiter ar...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.