Abstract

The possibility of using the short-lived radioisotope 188Re (16.9 h) in the radioactive-tracer technique for estimation of the losses occurred during sample preparation and for analysis of the solutions with a low rhenium content is shown. The radioisotope was obtained in an 188Re generator, which is a glass column filled with aluminum oxide with a pre-adsorbed parent isotope 188W (69.4 days) that forms 188Re during β-decay. The latter in the form of a perrhenate ion was selectively washed into an aqueous solution, which was used to obtain a labeled solution. The values of rhenium losses and their distribution over the stages of sample preparation of carbon-containing raw materials (e.g., high-viscosity oil) including sintering, leaching, filtration and evaporation are estimated. It is shown that the greatest amount of rhenium is lost at the stage of sintering. However, the use of MgO + KMnO4 mixture minimize the losses occurred at this stage and, hence, the total losses of rhenium. A rapid procedure of rhenium determination using the method of radiometric correction with substoichiometric separation is described. The method is based on the quantitative extraction of a stable complex of tetraphenylphosphonium cation (TPhPh) with the perrhenate ion by dichloroethane. The extraction constant of (C6H5)4PReO4 complex is (3.03 ± 0.75) × 106. The extraction of the perrhenate ion not complexing with TPhPh does not exceed 1 – 2 %. The developed method provides rhenium determination in the sample at a level of 1 – 100 μg. A 10-fold excess of Zn2+ and Ni2+ present in a chloride-containing medium affects the determination of rhenium. The anions , , and have the most pronounced interfering effect whereas , , and Cl– do not interfere with the determination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call