Abstract

The Hartley transform (HT) is an integral transform similar to the Fourier transform (FT). It has most of the characteristics of the FT. Several authors have shown that fast algorithms can be constructed for the fast Hartley transform (FHT) using the same structures as for the fast Fourier transform. However, the HT is a real transform and for this reason, since one complex multiplication requires four real multiplications, the discrete HT (DHT) is computationally faster than the discrete FT (DFT). Consequently, any process requiring the DFT (such as amplitude and phase spectra) can be performed faster by using the DHT. The general properties of the DHT are reviewed first, and then an attempt is made to use the FHT in some seismic data processing techniques such as one‐dimensional filtering, forward seismic modeling, and migration. The experiments show that the Hartley transform is two times faster than the Fourier transform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.