Abstract
Radiation transfer in an absorbing, emitting, anisotropically scattering, plane-parallel medium with diffusely reflecting boundaries is solved by application of the Galerkin method. With this approach, the radiation heat flux, angular distribution of radiation intensity, and the divergence of the radiation heat flux anywhere in the medium can be determined highly accurately. For optical thicknesses up to about 10, exact results are also readily obtainable if sufficient number of terms are considered in the expansion. Numerical results are presented for representative cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.