Abstract

The objective of this study was to develop calibrations to determine the concentration of some milk adulterants by using the automated methodology of Fourier Transform Infrared (FTIR). For construction of calibrations, samples were collected from 100 farms in the states of Sao Paulo and Minas Gerais. Samples were tainted with three different adulterants commonly used in the adulteration of raw milk: sodium bicarbonate (SB), sodium citrate (SC) and cheese whey (W). Each adulterant was used at three different concentrations (SB: 0.05, 0.10 and 0.25%; SC: 0.025, 0.050 and 0.075% and W: 5, 10 and 20%). For validation, 60 samples were collected in other farms, which were not considered at the development stage of calibration. Adulterants were added at the following concentrations: 0.03, 0.06, 0.10 and 0.12% for SB; 0.02, 0.04, 0.06 and 0.08% for SC and 5, 10 and 20% for W. Performance of each calibration was evaluated in terms of accuracy (Se), detection limit (DL) and determination coefficient (R2). All calibrations presented R2 higher than 0.91 with DL of 0.015%; 0.017% and 3.9% for SB, SC and W, respectively. Accuracy was 0.005%, 0.009% and 2.26% for SB, SC and W, respectively. Results show that the FTIR methodology can be used for determining the concentration of sodium bicarbonate, sodium citrate and whey in raw milk. Associated with automated equipment, it is a viable option for monitoring these adulterants, having low operational costs and high analytical performance as additional features.

Highlights

  • One of the most important facts for the dairy sector was the approval of the Instrução Normativa 51 (IN-51), from Ministério de Agricultura (MAPA), which determined new variables for evaluation of the quality of raw milk for establishments with Federal Inspection Service (SIF)

  • Associated with automated equipment, it is a viable option for monitoring these adulterants, having low operational costs and high analytical performance as additional features

  • The spectrum variation (Figure 1) reflected in the results of the composition, somatic cells count (SCC), pH and cryoscopy (Table 1), to what was observed in other surveys in the same regions

Read more

Summary

Introduction

One of the most important facts for the dairy sector was the approval of the Instrução Normativa 51 (IN-51), from Ministério de Agricultura (MAPA), which determined new variables for evaluation of the quality of raw milk for establishments with Federal Inspection Service (SIF). These characteristics hamper the implementation of monitoring programs in large scale In this context, studies have demonstrated the high potential of the utilization of the methodology of Fourier Transform Infrared (FTIR) in the control of quality and monitoring of the authenticity of raw milk (Gunasekaran & Irudayraj, 2000; Karoui & Baerdemaeker, 2007). Studies have demonstrated the high potential of the utilization of the methodology of Fourier Transform Infrared (FTIR) in the control of quality and monitoring of the authenticity of raw milk (Gunasekaran & Irudayraj, 2000; Karoui & Baerdemaeker, 2007) This methodology is already used to determine the components of milk (Leifier et al, 1996). Other compounds such as tetracycline, vegetable fat, urea, melamine and glucose may be identified, and their concentrations determined (Sivakesava & Irudayraj, 2002; Chen et al, 2008)

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call