Abstract

The use of the chemical shift of the phosphomonoester P-31 magnetic resonance peak for the determination of intracellular pH has been assessed for piglet and neonatal human brain in vivo. The chemical shift difference between resonance peaks corresponding to phosphoethanolamine and inorganic phosphate, compared with phosphocreatine, was determined for piglets and human neonates. Using in vitro pH titration data to calculate intracellular pH, it was found that pH values from the phosphoethanolamine peak (pH 6.84 to 6.80) were lower than pH estimates from the inorganic phosphate peak (pH 7.22 to 6.99). This difference suggests that phosphoethanolamine and inorganic phosphate may exist in different intracellular environments. Results are presented to demonstrate that the phosphomonoester peak may also be used to measure changes in intracellular pH associated with brain ischemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.