Abstract
Artificial intelligence techniques to forecasts based on the Community Multiscale Air Quality (PM2.5) operational model can be known using TensorFlow. TensorFlow was used in this study to assess the scores of the Recurrent Neural Networks (RNN) input variables on the 6-hour forecast for July-October 2022. The relevance scores for the one- and two-day forecasts are represented by the sum of the relevance scores across the target prediction timeframe 2–5 and 4–7 previous time steps. The initial selection of input variables was based on their correlation coefficient with the measured PM2.5 concentration. Still, the order of contribution of the input variables measured by TensorFlow was different from the order of their correlation coefficients, which indicated an inconsistency between the linear and nonlinear variables of the method. It was found that the retraining of the RNN model using a subset of variables with a high relevance score resulted in a predictive ability similar to the initial set of input variables.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.