Abstract

Abstract Because of the lack of data on past hurricanes, empirical evaluations of the statistics needed for risk management are very uncertain. An alternative strategy is to use a hurricane model to produce large sets of synthetic hurricane tracks. This method provides, for 11 regions of the U.S. Atlantic and Gulf Coasts, the annual landfall probabilities of hurricanes from each category of the Saffir–Simpson scale. This model can be used to investigate the future of hurricane risks. As a first step, the model is run with a 10% increase in potential intensity. Annual landfall probabilities increase in all regions, especially for the strongest hurricanes. The vulnerability of each U.S. coastal county is then calibrated using data on past hurricanes and their normalized economic losses. Annual hurricane damages increase by +54% in response to a 10% increase in potential intensity, meaning that the average normalized losses caused by hurricanes would increase from approximately $8 billion to about $12 billion per year. These results suggest that hurricane losses are very sensitive to changes in potential intensity and may rise significantly in response to climate change. This paper calls, therefore, for taking into account hurricane damages in the analysis of climate policies, even though other factors like population evolution, economic growth, and preparedness may remain the main drivers of hurricane damages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call