Abstract

A development of a structural dynamic model, i.e. a model with current change of the most important parameters according to a goal function, is presented with the aim to explain the structural changes observed in lakes, when the nutrient concentration is increased or decreased. This type of models may be important in lake management as it may be possible qualitatively to predict the success or failure of biomanipulation. The answer to the crucial question: at which phosphorus level will the success of biomanipulation be most probable?' will probably require the development of model which takes into account site specific processes and properties, i.e., a more complicated model. As goal function is proposed the thermodynamic function, exergy, which is defined as the work content of the system (model) compared with the system at thermodynamic equilibrium. It is shown that the structural dynamic modelling approach has been able to explain the shift from large to small zooplankton species at a certain level of phosphorus concentration, accompanied by a shifts from a dominance of zooplankton, and predatory fish to a system dominated by planktivorous fish and phytoplankton. The shift in zooplankton species cannot be explained by application of catastrophe theoretical models, which have been used to explain the hysteresis reaction. The results show that the shift should be expected at approximately 0.12 mg P l-1 and that a typical hysteresis reaction occurs at this concentration in accordance with the expectations. These results are consistent with many observations but should be interpreted with great caution, as the model is simple and general and don't account for a number of processes which may influence the results significantly in specific lake studies. The structural dynamic approach has previously been used in ten case studies with good agreement with the observations, but more case studies are needed before a general recommendation of the use of this type of models can be given. The results from this study point toward to apply this type of models for lake management where biomanipulation is involved, although it should be recommended to improve the presented general model with introduction of site specific properties for a considered lake study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.