Abstract
Strain gauges and strain measurements have been widely used in structural health monitoring (SHM) systems as a means of detecting and localizing damage, due to their higher sensitivity to local damage. These damage identification techniques normally use strain related measurements such as the mode curvature, strain frequency response function or strain energy as the main parameter to detect damage. However, damage detection techniques based on acceleration measurements have also been investigated in the past, using modal parameter comparison and other methodologies. In this paper, the use of vibration-based strain measurements for use in SHM systems will be evaluated, with the purpose of characterizing their higher sensitivity in damage detection, when compared to other vibration measurements, such as acceleration-based measurements. Since the choice and use of the most damage sensitive parameter can lead to a more sensitive and robust system, the assessment of the more suitable sensor and processing of information is very important. For this purpose, numerical and experimental examples will be discussed to evaluate the higher performance of the strain gauges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.