Abstract

Transport time scales are common metrics of the strength of transport processes. Water age is the time elapsed since water from a specific source has entered a study area. An observational method to estimate water age relies on the progressive concentration of the heavier isotopes of hydrogen and oxygen in water that occurs during evaporation. The isotopic composition is used to derive the fraction of water evaporated, and then translated into a transport time scale by applying assumptions of representative water depth and evaporation rate. Water age can also be estimated by a hydrodynamic model using tracer transport equations. Water age calculated by each approach is compared in the Cache Slough Complex, located in the northern San Francisco Estuary, during summer conditions in which this region receives minimal direct freshwater inflow. The model’s representation of tidal dispersion of Sacramento River water into this backwater region is evaluated. In order to compare directly to isotopic estimates of the fraction of water evaporated (“fractional evaporation”) in addition to age, a hydrodynamic model-based property tracking approach analogous to the water age estimation approach is proposed. The age and fractional evaporation model results are analyzed to evaluate assumptions applied in the field-based age estimates. The generally good correspondence between the water age results from both approaches provides confidence in applying the modeling approach to predict age through broader spatial and temporal scales than are practical to assess using the field method, and discrepancies between the two methods suggest aspects of both approaches that may be improved. Model skill in predicting water age is compared to skill in predicting salinity. Compared to water age, salinity observations are shown to be a less useful diagnostic of transport in this low salinity region in which salt inputs are poorly constrained.

Highlights

  • Time scales are metrics of the time associated with processes such as physical transport or biogeochemical reactions [1]

  • Water age can be estimated based on the fractional evaporation of water inferred from variation in the stable isotopes of hydrogen (2 H) and oxygen in water (18 O) along transects through the Cache Slough Complex (CSC) in the northern San Francisco Estuary (SFE) [4]

  • The main objective of this study is to investigate the utility of water isotope-based age estimates in evaluating the representation of transport processes by a hydrodynamic model

Read more

Summary

Introduction

Time scales are metrics of the time associated with processes such as physical transport or biogeochemical reactions [1]. Comparison of transport time scales with biogeochemical time scales provide insight to the relative importance of transport. Intermediate cases in which transport time scales and biogeochemical time scales are similar can have desired ecological. Water age is a transport time scale quantifying the time elapsed since a water parcel entered a study area [3]. Residence time quantifies the time required for a water parcel starting at a specific time and location to leave the study area [3]. Water age can be directly useful in estimating biogeochemical rates [4]. Water age can be estimated based on the fractional evaporation of water inferred from variation in the stable isotopes of hydrogen (2 H) and oxygen in water (18 O) along transects through the Cache Slough Complex (CSC) in the northern San Francisco Estuary (SFE) [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call