Abstract

Incubation of Sendai virus particles with non-ionic detergents such as Triton X-100 completely solubilizes the viral envelopes. Removal of the detergent from the supernatant (which contains the two main viral glycoproteins) leads to the formation of fusogenic, reconstituted viral envelopes. Soluble macromolecules such as DNA or proteins can be enclosed within the reconstituted vesicles, while membrane components can be inserted into the viral envelopes. Fusion of such loaded or 'hybrid' reconstituted envelopes with living cells in culture results in either microinjection or transfer of the viral components to the recipient cells. Thus such reconstituted envelopes can serve as efficient carriers for the introduction of macromolecules of biological interest into living cells in culture. A more specific vehicle has been constructed by chemically coupling anti-cell membrane antibodies (anti-human erythrocyte antibody) to the viral envelope. Such antibody-bearing intact virus particles or reconstituted envelopes bound to and fused with virus receptor-depleted cells. In addition, anti-Sendai virus antibodies were coupled to neuraminidase-treated human erythrocytes. Such antibodies mediated the binding and fusion of intact Sendai virus particles and their reconstituted envelopes to virus receptor-depleted cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call