Abstract

Abstract Today, the world is facing an enormous challenge where the emissions of greenhouse gases must be reduced significantly to stop the increasing mean temperature. For the construction industry, this challenge means that structures must be designed more carefully, and materials must be used and produced more efficiently. Concrete is one of the most widely used materials, and cement production alone contributes to around 8 % of the world’s total CO2 emissions. This paper presents a pilot study in which part of the cement clinker content in accelerated shotcrete is replaced with ground granulated blast furnace slag (GGBS). Shotcrete is widely used as part of the rock support for tunnels in hard rock and has a large cement content. Thus, the environmental impact must be reduced significantly to meet future demands. However, introducing GGBS will slow down strength development, which is a crucial part of shotcrete. Thus, this paper aims to investigate the early strength development, i.e., after one and seven days. The results show that an average compressive strength of 18 MPa can be reached after 24 hours when 35 % of the cement clinker content is replaced with GGBS. Finally, some important topics for further studies are pointed out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call