Abstract

Different sets of silica aerogels (classical aerogels, partially densified aerogels, and composite aerogels) have been studied for their prospective use as host matrices for chemical species. Two relevant parameters, the mechanical properties and permeability, are measured and compared in order to discuss the advantages and drawbacks of the three different synthetic approaches. Mechanical resistance is measured by the static bending technique and permeability by an impregnation method. By adjusting the mechanical resistance and especially the mean pore-size, it is possible to control impregnation of liquid within the porous network of the aerogel. Facile liquid impregnation into mechanically durable aerogels allows one to synthesize different composites and multi-phase materials after soaking, drying and sintering. Three examples of applications are detailed: doped glass for the Faraday effect, glass-ceramics for nuclear waste containment, and liquid crystals in confined media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.