Abstract

Sedimentation Field Flow Fractionation (SdFFF) was combined with Photon Correlation Spectroscopy (PCS), to characterize changes in the structure of the colloidal particles of reconstituted skim milk of diameter >50 nm (aggregates of casein and calcium phosphate known as casein micelles) with the changes in partitioning (with the addition of salt) of calcium (Ca), inorganic phosphate (Pi) and casein between the serum and colloidal phases of the milk. The number weighted particle size distributions are determined. These are well represented by a log-normal distribution. Methods are presented for estimating the relative contributions of scattering and absorbance to the SdFFF detector signal and for taking both into account when analysing SdFFF data. The values found for the effective density of the casein micelles were in good agreement with the literature and ranged from (1.06-1.08 g cm(-3)) according to the composition of micelles. The changes in the scattering intensity as determined by PCS correlated with the changes in the particle composition. Although the concentrations of colloidal calcium phosphate (CCP) (1.1-3.5 g/kg milk) and micellar casein (18.1-27.2 g/kg milk) varied considerably only small changes in the size distribution of particles >50 nm diameter were observed except for milk to which 30 mmol Pi+10 mmol Ca/kg milk had been added where the particle size distribution shows a swelling of the particles consistent with a lower than expected value for the particle density. These observations suggest that the micelles have the ability to both lose (depleted micelles) and accommodate (enriched micelles) more casein, calcium and inorganic phosphate in their interior, thus confirming the model of the micelles which postulates an open structure allowing freedom of movement of casein and small ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.