Abstract
Hydrodynamic (HD) modelling in data sparse region represents a challenge due to poor hydrological and topographic data availability. Recently, remote sensing techniques offer additional data that may help to improve the reliability and accuracy of such analysis. In this study, an attempt has been made to investigate the potential and added value of altimeter measurements for multi-site validation of the HD model and constructed rating curves (RCs) in a sparsely gauged Brahmaputra River, India. The HD model (MIKE 11) was developed for a Brahmaputra River stretch of 135 km, between Tezpur and Guwahati, where 4 ground-tracks of the SARAL/AltiKa (the first Ka band altimeter mission) cross the river. The Nash Sutcliffe efficiency (NSE) between HD model based water level and in-situ water level during calibration (January-October 2013) and validation (January-March 2014) was found to be 0.93 and 0.79 respectively. Calibrated and validated HD model was used to simulate water level and build rating curves at virtual stations. The bias correction (7.2 cm to 9.5 cm) was applied to the altimetry measurements before comparison with the modelled water levels. The root mean square error (RMSE) ranging between 15 cm and 42 cm was observed between the modelled and altimetry-derived water level at all the virtual stations, indicating the potential of satellite altimetry for multi-site validation of the HD model (inline with previous studies) and validation of the constructed RCs. The availability of RCs at virtual stations allows the expansion of the gauging network along the Brahmaputra River, thus enabling the estimation of the discharge at additional locations and the potential evaluation of the contributions of lateral tributaries could be evaluated in future work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.