Abstract

Pest management in farm animals is an important action to contain economic damage to livestock production and prevent transmission of severe diseases to the stock. The use of chemical insecticides is still the most common approach followed by farmers; however, avoiding possible toxic effects on animals is a fundamental task for pest control measures compatible with animal well-being. Moreover, legal constraints and insurgence of resistance by target species to the available insecticidal compounds are increasingly complicating farmers' operations. Alternatives to chemical pesticides have been explored with some promising results in the area of biological control or the use of natural products as sprays. The application of RNA interference techniques has enabled the production of new means of pest control in agriculture, and it is opening a promising avenue for controlling arthropod pests of livestock. Transcript depletion of specific target genes of the recipient organisms is based on the action of double-strand RNAs (dsRNA) capable of impairing the production of fundamental proteins. Their mode of action, based on the specific recognition of short genomic sequences, is expected to be highly selective towards non-target organisms potentially exposed; in addition, there are physical and chemical barriers to dsRNA uptake by mammalian cells that render these products practically innocuous for higher animals. Summarising existing literature on gene silencing for main taxa of arthropod pests of livestock (Acarina, Diptera, Blattoidea), this review explores the perspectives of practical applications of dsRNA-based pesticides against the main pests of farm animals. Knowledge gaps are summarised to stimulate additional research in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.