Abstract
Purpose. Increasing of treatment efficiency for patients with acute pancreatitis by improving objective means of determining the severity of acute pancreatitis.Materials and method. The study was based on a retrospective analysis of 130 cases of acute pancreatitis: 47 cases from «Krasnoyarsk Regional Clinical Hospital» and 83 cases from «Regional Interdistrict Clinical Hospital No 20 named after I.S. Berzon» in the period from 2015 to 2017. The raw data was pre-processed. In particular, different methods (median, linear regression) were used to fill the missing values in the observation matrix. The initial dataset contained features measured in various quantitative and categorical scales. For some features with a pronounced asymmetric distribution, a quantile transformation was applied to initial values. The quantile transformation allows features to be brought to a uniform distribution in order to reduce the risk of excluding significant features. Ridge regression was used in combination with an algorithm for sequential reduction of attribute space.Results. The classifier of three degrees of acute pancreatitis severity was developed. This classifier can help to determine better treatment tactics. During validation, the method of determining the severity of acute pancreatitis classification has proven to be effective. The average accuracy was 92% compared to the experts’ decisions. This procedure for constructing a classifier can be used as part of the basis to the medical decision support system.Conclusion. The results of this study will help to make the choice of a necessary starting therapy, assess the need for surgical intervention and in severe cases, prescribe enhanced antibacterial and detoxification therapy. This will predictably reduce the percentage of septic complications of acute pancreatitis, and consequently will reduce the frequency of fatal outcomes.
Highlights
The study was based on a retrospective analysis of 130 cases of acute pancreatitis: 47 cases from «Krasnoyarsk Regional Clinical Hospital» and 83 cases from «Regional Interdistrict Clinical Hospital No 20 named after I.S
For some features with a pronounced asymmetric distribution, a quantile transformation was applied to initial values
The quantile transformation allows features to be brought to a uniform distribution in order to reduce the risk of excluding significant features
Summary
Использование гребневой регрессии для оценки степени тяжести острого панкреатита Черданцев Д.В.1, Строев А.В.1, Мангалова Е.С.2, Кононова Н.В.3, Чубарова О.В.4. Повышение эффективности лечения пациентов с острым панкреатитом путем совершенствования объективизации степени тяжести острого панкреатита. Красноярск), 83 из КГБУЗ «Краевая межрайонная клиническая больница No 20 им. Позволяющий прогнозировать три степени тяжести острого панкреатита, для определения выбора рациональной клинической тактики. Метод классификации степени тяжести острого панкреатита показал свою эффективность при валидации. Полученные результаты в дальнейшем позволят сделать выбор рациональной стартовой терапии, оценить необходимость оперативного вмешательства и при тяжелой степени назначить усиленную антибактериальную и дезинтоксикационную терапию, что, вероятно, снизит количество случаев гнойно-септических осложнений острого панкреатита и уменьшит частоту летальных исходов. Ключевые слова: острый панкреатит, степень тяжести, классификатор, категориальные признаки, значимые показатели, восстановление пропусков, гребневая регрессия, AUC (Area Under Curve). Черданцев Д.В., Строев А.В., Мангалова Е.С. и др
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.