Abstract
The present study has been designed to optimise certain important process parameters for Scenedesmus vacuolatus to achieve efficient carbon dioxide extenuation as well as suitable fatty acid profile in context to improve biodiesel properties. The effect of varying sodium bicarbonate concentration was evaluated in single and multicomponent system such as nitrate, phosphate, inoculum size to observe interactive effects on algae biomass production, carbon dioxide (CO2) removal efficiency and fatty acid methyl ester (FAME) profile. Maximum biomass productivity of 117.0 ± 7.7mg/L/day with 3g/L of sodium bicarbonate was obtained i.e. approximately 2 folds higher than the control. Under multicomponent exposure, maximum biomass of 1701.5 ± 88.8mg/L and maximum chlorophyll concentration of 15.3 ± 6.4mg/L were achieved on 14th day at 3g/L sodium nitrate, 0.1g/L dipotassium hydrogen phosphate, 2g/L of sodium bicarbonate and initial cell density of 0.3 (N3P0.1B2OD0.3). FAME content of 46.1mg/g of biomass was obtained at this combination which is approximately 3 folds higher than the FAME content obtained under nitrogen and phosphate deprivation (16.6mg/g at N0P0B2OD0.3). Confocal microscopy images confirmed the results with enhanced lipid droplet accumulation at high bicarbonate concentration as compared with the control. This interactive study concluded the variability in FAME profile along with the exposure to varying nutrient concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.