Abstract

AbstractLocalized corrosion in aqueous environments forms an important bounding condition for the performance assessment of high-level waste (HLW) container materials. A predictive methodology using repassivation potential is examined in this paper. It is shown, based on long-term (continuing for over 11 months) testing of alloy 825, that repassivation potential of deep pits or crevices is a conservative and robust parameter for the prediction of localized corrosion. In contrast, initiation potentials measured by short-term tests are non-conservative and highly sensitive to several surface and environmental factors. Corrosion data from various field tests and plant equipment performance are analyzed in terms of the applicability of repassivation potential. The applicability of repassivation potential for predicting the occurrence of stress corrosion cracking (SCC) and intergranular corrosion in chloride containing environments is also examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call