Abstract

Understanding changes in slope geometry and knowledge of underlying engineering properties of the rock mass are essential for the safe design of man-made slopes and to reduce the significant risks associated with slope failure. Recent advances in the geomatics industry have provided the capability to obtain accurate, fully geo-referenced three-dimensional datasets that can be subsequently interrogated to provide engineering-based solutions for monitoring of deformation processes, rock mass characterization and additional insight into any underlying failure mechanisms. Importantly, data can also be used to spatially locate and map geological features and provide displacement or deformation rate information relating to movement of critical sections or regions of a slope.This paper explores the benefits that can be obtained by incorporating different remote sensing techniques and conventional measurement devices to provide a comprehensive database required for development of an effective slope monitoring and risk management program. The integration of different techniques, such as high accuracy discrete point measurement at critical locations, which can be used to complement larger scale less dense three-dimensional survey will be explored. Case studies using a combination of aerial and terrestrial laser scanning, unmanned aerial vehicle and hand-held scanning devices will demonstrate their ability to provide spatial data for informing decision making processes and ensuring compliance with Regulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call