Abstract

Near infrared reflectance spectroscopy and imaging was used to assess non-invasively the hemodynamic changes that occur in the early post-burn period in cutaneous burn injuries of varying depth. An acute porcine model was used to demonstrate the potential of near infrared spectroscopy and imaging to accurately determine the change in tissue oxygenation, blood volume and tissue water content following a thermal injury. Near infrared spectroscopy was used to monitor tissue at discrete locations, while spectroscopic imaging was able to survey large areas of tissue. Both methods were rapid and non-invasive. Tissue hemoglobin oxygen saturation, total hemoglobin and tissue water content were all affected by thermal injury and changed significantly over a 3 h post-burn monitoring period. Burns that ranged in severity between superficial and full thickness displayed a significantly different hemodynamic response. When the early post-burn profiles (1–3 h) of tissue hemoglobin oxygen saturation, total hemoglobin and tissue water content were considered jointly, injuries leading to superficial, intermediate partial thickness, deep partial thickness and full thickness burns could all be differentiated at high statistical significance. These results suggest that non-invasive hemodynamic monitoring in the early post-burn period using near infrared spectroscopy may be of value in the early assessment of burn injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.