Abstract

Expansion of gene families facilitates robustness and evolvability of biological processes but impedes functional genetic dissection of signalling pathways. To address this, quantitative analysis of single cell responses can help characterize the redundancy within gene families. We developed high-throughput quantitative imaging of stomatal closure, a response of plant guard cells, and performed a reverse genetic screen in a group of Arabidopsis mutants to five stimuli. Focussing on the intersection between guard cell signalling and the endomembrane system, we identified eight clusters based on the mutant stomatal responses. Mutants generally affected in stomatal closure were mostly in genes encoding SNARE and SCAMP membrane regulators. By contrast, mutants in RAB5 GTPase genes played specific roles in stomatal closure to microbial but not drought stress. Together with timed quantitative imaging of endosomes revealing sequential patterns in FLS2 trafficking, our imaging pipeline can resolve non-redundant functions of the RAB5 GTPase gene family. Finally, we provide a valuable image-based tool to dissect guard cell responses and outline a genetic framework of stomatal closure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.