Abstract

Multiple Reaction Monitoring (MRM) is a sensitive and selective detection mode for target trace-level analysis. However, it requires the fragmentation of labile bonds which are not present in molecules such as Polycyclic Aromatic Hydrocarbons (PAHs) and their heterocyclic derivatives (PANHs, PASHs). We present the application of an alternative tandem mass spectrometry (MS/MS) mode called "pseudo-MRM" for the GCMS/MS analysis of Polycyclic Aromatic Compounds (PACs). This mode is based on the monitoring of transitions with no mass loss between the precursor and the product ion. Pseudo-MRM peak areas were compared with those of classic MRM on three different mass spectrometers: two triple quadrupoles and an ion trap. For all non-polar PACs studied here (PAHs, PANHs and PASHs), the pseudo-MRM transition was always the most intense. The classic MRM transitions exhibited peak areas 2 to 5 times lower. On the contrary, for the functionalized PACs (oxygenated and nitrated PAHs), classic MRM was favored over pseudo-MRM. These observations were confirmed on two triple quadrupoles (QqQs), and the real-world applicability of pseudo-MRM on QqQs was validated by the successful analysis of Diesel PM. However, a comparison with an ion trap showed that pseudo-MRM was never favored on that instrument, which caused fragmentation of non-polar PACs in MS/MS. The results of this study show an important gain in sensitivity when using pseudo-MRM instead of MRM for non-polar PACs on QqQ instruments. The selectivity of MRM is preserved in pseudo-MRM by applying non-zero collision energies to which only these non-polar PACs are resistant, not the isobaric interferences. No interference issue was observed when analyzing Diesel PM, a complex matrix, with our pseudo-MRM method. Therefore, we advise for a broader use of this MS/MS mode for trace-level determination of non-polar PAHs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call