Abstract
It is well known that the celestial polarization is used as a compass cue by many species of insects and crustaceans. Although it has been shown that the sandhopper Talitrus saltator perceives polarized light and possesses an arrangement of the rhabdomeres that could allow e-vector interpretation and utilization, T. saltator does not use the e-vector of the skylight polarization as a compass cue when making excursions along the sea–land axis of sandy shores. We performed tests in confined conditions to clarify if skylight polarization is somehow involved in the zonal recovery of T. saltator. We observed the directional responses of sandhoppers in a transparent bowl under an artificial sky (an opaline Plexiglas dome). The bowl was covered by a blue gelatin filter with a grey filter (control condition) and a linear polarizing filter (experimental conditions) positioned under the blue one in such a way as to occupy half of the upper surface of the Plexiglas bowl so as to create a linear polarization gradient. Our experiments confirm that T. saltator perceives polarized light and highlight that this visual capability determines the perception, or perhaps the increase, of the radiance and/or spectral gradient and their use as compass cues in the zonal orientation. Moreover, our findings confirm that the radiance gradient is used as a chronometric compass orienting reference in the absence of other celestial orienting cues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.