Abstract
Abstract Two medium to low volatile bituminous rank coals in the Lower Cretaceous Gates Formation (Mannville equivalent), Inner Foothills of Alberta, were cored as part of a coalbed methane exploration program. The target seams (Seam 4 and Seam 10) were intersected at 652 m and 605 m, respectively. The coals were bright banded, relatively competent and reasonably cleated, with cleat spacing between 5–20 mm. The FMI (Formation Micro-Imaging) log identified two primary fracture directions, corresponding to both face and butt cleats, which were developed almost equally in some coal intervals. The amount of shearing was limited, in spite of the presence of numerous thrust faults and fold structures in the corehole vicinity. Total gas content was high, with an average of 17.7 cm 3 /g (arb; 568.1 scf/t). An adsorption isotherm of the thick Seam 4 showed gas saturation levels of 90% at in-situ reservoir conditions. Methane content was 92–96% and carbon dioxide levels were less than 2%. Isotopic studies on the methane confirmed the thermogenic origin of the gas, as anticipated based on the coal rank. The coal seams were fracture stimulated using 50/50 nitrogen and fresh water along with 9 to 12 tons of 12/20 mesh sand used as a proppant. It is believed that the coals were not stimulated properly because of the small proppant volume and the complex — and often unpredictable — fracture pattern in coals, particularly in the Inner Foothills region that has high stress anisotropy. An injectivity test showed coal absolute permeability to be less than 1 mD, the skin to be − 2 (indicating a slightly damaged coal) and water saturation in the cleats to be 90%. A four-month production test was conducted; gas rates declined from 930 to 310 m 3 /d (33 to 11 MCFD) and water rates were low ( constructive interference in depressurizing the coal reservoirs and accelerating gas production over short periods of time was demonstrated. Coal quality data from a nearby underground mine shows that drilling horizontal wellbores in the Gates coals would be challenging because of unfavourable geomechanical properties, such as low cohesion and unconfined compressive strength values, and structural complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.