Abstract

This study deals with the development of Artificial Neural Network (ANN) and Multiple Regression (MR) models for estimating the critical factor of safety (Fs) value of a typical artificial slope subjected to earthquake forces. To achieve this, while the geometry of the slope and the properties of the man-made soil are kept constant, the natural subsoil properties, namely, cohesion, internal angle of friction, the bulk unit weight of the layer beneath the ground surface and the seismic coefficient, varied during slope stability analyses. Then, the Fs values of this slope were calculated using the simplified Bishop method, and the minimum (critical) Fs value for each case was determined and used in the development of the ANN and MR models. The results obtained from the models were compared with those obtained from the calculations. Moreover, several performance indices, such as determination coefficient, variance account for, mean absolute error and root mean square error, were calculated to check the prediction capacity of the models developed. The obtained indices make it clear that the ANN model has shown a higher prediction performance than the MR model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.