Abstract
This paper introduces a novel real-time approach to detecting wormhole defects in friction stir welding in a nondestructive manner. The approach is to evaluate feedback forces provided by the welding process using the discrete Fourier transform and a multilayer neural network. It is asserted here that the oscillations of the feedback forces are related to the dynamics of the plasticized material flow, so that the frequency spectra of the feedback forces can be used for detecting wormhole defects. A one-hidden-layer neural network trained with the backpropagation algorithm is used for classifying the frequency patterns of the feedback forces. The neural network is trained and optimized with a data set of forge–load control welds, and the generality is tested with novel data set of position control welds. Overall, about 95% classification accuracy is achieved with no bad welds classified as good. Accordingly, the present paper demonstrates an approach for providing important feedback information about weld quality in real-time to a control system for friction stir welding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.