Abstract

Activated carbon (AC) air-cathode is demonstrated to be promising for the energy recovery from wastewaters. However, it suffers from the performance decay after long-term operation in microbial fuel cells (MFCs). Here we add a natural hierarchical porous nitrogen-rich carbon material, carbonized Artemia cyst shells (LC), to alleviate the power decay. When the air-cathode is made of a mixture of AC and LC with a mass ratio of 1:2 (named 1AC2LC), the current densities are 28% (the beginning) and 65% (after 1 year's operation) higher than AC cathodes, and the long-term power densities increase from 0.871 ± 0.002 (AC) to 1.296 ± 0.005 W m−2 (1AC2LC) after one year's operation. The Coulombic efficiency increases by 20% than the control. This can be primarily attributed to these inerratic hierarchical pores enhancing oxygen transfer in the catalyst layer since the oxygen mass transfer coefficient is increased by 3.4 times, where the meso- and macro-pores are enlarged, showing the importance of oxygen transfer on the longevity and energy production. Our results show a novel way, addition of inexpensive carbonized Artemia cyst shells, to optimize cathodic porous structure and enhance the longevity of MFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.