Abstract

BackgroundRift Valley Fever Virus (RVFV) is a zoonotic virus that is not only an emerging pathogen but is also considered a biodefense pathogen due to the threat it may cause to public health and national security. The current state of diagnosis has led to misdiagnosis early on in infection. Here we describe the use of a novel sample preparation technology, NanoTrap particles, to enhance the detection of RVFV. Previous studies demonstrated that NanoTrap particles lead to both 100 percent capture of protein analytes as well as an improvement of more than 100-fold in sensitivity compared to existing methods. Here we extend these findings by demonstrating the capture and enrichment of viruses.ResultsScreening of NanoTrap particles indicated that one particle, NT53, was the most efficient at RVFV capture as demonstrated by both qRT-PCR and plaque assays. Importantly, NT53 capture of RVFV resulted in greater than 100-fold enrichment from low viral titers when other diagnostics assays may produce false negatives. NT53 was also capable of capturing and enhancing RVFV detection from serum samples. RVFV that was inactivated through either detergent or heat treatment was still found bound to NT53, indicating the ability to use NanoTrap particles for viral capture prior to transport to a BSL-2 environment. Furthermore, both NP-40-lysed virus and purified RVFV RNA were bound by NT53. Importantly, NT53 protected viral RNA from RNase A degradation, which was not observed with other commercially available beads. Incubation of RVFV samples with NT53 also resulted in increased viral stability as demonstrated through preservation of infectivity at elevated temperatures. Finally, NanoTrap particles were capable of capturing VEEV and HIV, demonstrating the broad applicability of NanoTrap particles for viral diagnostics.ConclusionThis study demonstrates NanoTrap particles are capable of capturing, enriching, and protecting RVFV virions. Furthermore, the use of NanoTrap particles can be extended to a variety of viruses, including VEEV and HIV.

Highlights

  • Rift Valley fever virus (RVFV) belongs to the genus Phlebovirus and family Bunyaviridae

  • Our research looked at Rift Valley Fever Virus (RVFV), a virus that can only be worked with in biosafety level 3 (BSL-3) laboratories, and its capture with NanoTrap particles

  • We demonstrated that whole virus detection with NanoTrap particles is not limited to only RVFV, but that NanoTrap particles can be used to detect other viruses such as Human Immunodeficiency Virus (HIV) and Venezuelan Equine Encephalitis Virus (VEEV)

Read more

Summary

Introduction

Rift Valley fever virus (RVFV) belongs to the genus Phlebovirus and family Bunyaviridae. RVFV is a highly pathogenic arthropod-borne virus that is primarily transmitted by mosquitoes, after heavy rainfall. It can infect a wide range of vertebrate hosts, RVFV primarily affects livestock and humans [2]. Previous studies demonstrated that NanoTrap particles lead to both 100 percent capture of protein analytes as well as an improvement of more than 100-fold in sensitivity compared to existing methods. We extend these findings by demonstrating the capture and enrichment of viruses

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.