Abstract

<p>Carbon dioxide (CO<sub>2</sub>) is an important greenhouse gas, and it accounts for about 20% of the present-day anthropogenic greenhouse effect. Atmospheric CO<sub>2</sub> is cycled between the terrestrial biosphere and the atmosphere through various land-surface processes and thus links the atmosphere and terrestrial biosphere through positive and negative feedback. Since multiple trace gas elements are linked by common biogeochemical processes, multi-species analysis is useful for reinforcing our understanding and can help in partitioning CO<sub>2</sub> fluxes. For example, in the northern hemisphere, CO<sub>2</sub> has a distinct seasonal cycle mainly regulated by plant photosynthesis and respiration and it has a distinct negative correlation with the seasonal cycle of the δ<sup>13</sup>C isotope of CO<sub>2</sub>, due to a stronger isotopic fractionation associated with terrestrial photosynthesis. Therefore, multi-species flask-data measurements are useful for the long-term analysis of various green-house gases. Here we try to infer the complex interaction between the atmosphere and the terrestrial biosphere by multi-species analysis using atmospheric flask measurement data from different NOAA flask measurement sites across the northern hemisphere.</p><p>This study focuses on the long-term changes in the seasonal cycle of CO<sub>2</sub> over the northern hemisphere and tries to attribute the observed changes to driving land-surface processes through a combined analysis of the δ<sup>13</sup>C seasonal cycle. For this we generate metrics of different parameters of the CO<sub>2</sub> and δ<sup>13</sup>C seasonal cycle like the seasonal cycle amplitude given by the peak-to-peak difference of the cycle (indicative of the amount of CO<sub>2</sub> taken up by terrestrial uptake),  the intensity of plant productivity inferred from the slope of the seasonal cycle during the growing season , length of growing season and the start of the growing season. We analyze the inter-relation between these metrics and how they change across latitude and over time. We hypothesize that the CO<sub>2 </sub>seasonal cycle amplitude is controlled both by the intensity of plant productivity and period of the active growing season and that the timing of the growing season can affect the intensity of plant productivity. We then quantify these relationships, including their variation over time and latitudes and describe the effects of an earlier start of the growing season on the intensity of plant productivity and the CO<sub>2</sub> uptake by plants.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.