Abstract

Abstract In this empirically-driven research, multibeam backscatter angular response analysis is presented, together with shallow electromagnetic data and groundtruthing, to examine its suitability as a proxy for sediment characterisation. Backscatter angular curves extracted from Kongsberg EM1002 sonar (95–98 kHz), acquired in the Malin Basin to the northwest of Ireland, have been selected as a case study. Standard angular backscatter features and newly derived curvature features are examined and cross compared. Exhaustive statistical analysis has been performed on the data to elucidate the complex relationship between multibeam backscatter and sediment properties. Subtle subsurface sediment property gradients across the basin identified by the conductivity system are also captured by the newly derived backscatter features. The results reveal that Near-range backscatter is better suited for subsurface sediment characterisation in soft, fine-grained sediments than far-range. Furthermore, the analysis has constrained the optimum interval for such characterisation to in-between 4° and 16° for the parameters of this study. A number of shape features (slope, first derivative, second derivative and Fourier-smoothed least-squares-fitted curvature) have been examined, and their suitability discussed, in terms of sediment characterisation and, in particular, as potential proxies for delineating the boundary between sand- or silt-dominated sediment facies. Nonetheless, curvature features are found to be independent from average angular backscatter response, but outperform both first and second derivatives when correlating with conductivity in the central part of this case-study with fine-grained homogeneous sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.