Abstract

The main objective of this work was to establish those factors either physical (power input) or chemical (limiting substrate or dilution rate) that enhance cell aggregation (biofilm or floc formation) and cell physiological state during aerobic continuous cultures of Bacillus licheniformis. Glucose-limited steady-state continuous cultures growing at a dilution rate between 0.64 and 0.87/h and 1,000 rpm (mean specific energy dissipation rate (epsilonT) = 6.5 W/kg), led to the formation of a thin biofilm on the vessel wall characterized by the presence of a high proportion of healthy cells in the broth (after aggregate disruption by sonication) defined as having intact polarized cytoplasmic membranes. An increased epsilonT (from 6.5 W/kg to 38 W/kg) was found to hinder cell aggregation under carbon limitation. The carbon recovery calculated from glucose indicated that additional extracellular polymer was being produced at dilution rates >0.87/h. B. licheniformis growth under nitrogen limitation led to floc formation which increased in size with dilution rate. Counter-intuitively the flocs became more substantial with an increase in epsilonT from 6.5 W/kg to 38 W/kg under nitrogen limitation. Indeed the best culture conditions for enhanced metabolically active cell aggregate formation was under nitrogen limitation at epsilonT = 6.5 W/kg (leading to floc formation), and under carbon limitation at a dilution rate of between 0.64 and 0.87/h, at epsilonT = 6.5 W/kg (leading to vessel wall biofilm formation). This information could be used to optimize culture conditions for improved cell aggregation and hence biomass separation, during thermophilic aerobic bioremediation processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.